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Abstract

This article presents a generalization of the equilibrium analysis for the simple two-player
poker game with alternate bidding of Von Neumann and Morgenstern. It approximates
optimal play for this game if it is played with a regular deck of 52 cards and it discusses
some strategic insights. In addition, the paper studies the relative skill level of this game.
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1 Introduction

An interesting aspect of a game with chance elements is the skill that players can utilize to

affect the game’s outcome. This is obviously an interesting topic for discussion among players

or between players and spectators, but besides that it is also important from a juridical point

of view. In many countries, for instance in the Netherlands, the exploitation of casino games is

regulated by a law that makes a distinction between games of chance and games of skill. As the

name suggests, this distinction is based on the skill that can be used in the game. Games of skill

can be freely exploited, whereas for the exploitation of games of chance a licence is required.

The Dutch government has only granted such a licence to its own Holland Casino foundation.

Following the Dutch gaming act, Borm and Van der Genugten (2001) roughly defined the

skill level of a game as the extent to which players can influence the game outcome, relative to

the effect of the random device on this outcome. They developed a measure which enables an

ordering of games on the real line between zero and one. A pure game of chance is assigned a

skill level of zero, while a skill level of one corresponds to pure games of skill. A paper on skill

in a somewhat broader context is Larkey, Kadane, Austin and Zamir (1997). That paper does

not consider juridical problems, but it provides an interesting discussion on the interpretation

and relevance of the concept of skill in analyzing and solving games.

A class of games that is interesting for application of the skill analysis is formed by poker

games. So far, the skill computations in this area were restricted to simple examples that were
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used mainly for decorative purposes. Only games with very few cards were considered, while

in a real poker game a player receives one hand from a range of 2,598,960 possible hands. An

increase in the number of cards in the model will therefore be a good step towards a better

approximation of the skill involved in real life poker games.

This paper approximates the situation with 2,598,960 hands by studying an extension of

the two-player poker model with alternate bidding that was introduced by Von Neumann and

Morgenstern (1944, chapter 19). This game is played as follows. First, both players pay an

ante and receive a hand. Next, player 1 chooses between betting a fixed bet size, and passing.

When player 1 has decided to bet, then player 2 can choose between folding and calling at the

cost of the bet size. In the first case, he gives up the ante, while in the second case the same

thing happens as when player 1 has passed: a showdown follows. In the showdown, the player

with the better hand wins the pot. A specific variant of this game is also studied in the book of

Binmore (1992).

In the model of Von Neumann and Morgenstern (1944) the hands of the players are drawn

from a continuous uniform distribution on [0, 1]. This paper extends the model by considering

general hand distributions. We compute the value of the game as well as optimal strategies

for both players. Next, we translate our general strategic results to the situation where the

game is played with a deck of 52 cards. We need this information to perform our final step, the

approximation of the skill level of this game using the method described by Borm and Van der

Genugten (2001). More details and applications of this skill analysis can be found in the book

on skillful gambling by Van der Genugten, Das and Borm (2001).

The paper is organized as follows. First, we will give an exact description of the specific

poker game under consideration in section 2. In section 3 we will compute the optimal strate-

gies for both players and discuss equilibrium play in some more detail. Subsequently, we will

approximate optimal play for the case where this poker game is played with a regular deck of

52 cards. This is the subject of section 4. Finally, we will measure the presence of skill in this

variant of poker and present the results in section 5.

2 Game description

We will give a formal description of the rules of our poker game, to which we will refer as

minipoker throughout this text. To begin the game, both players add an ante of size a to the

stakes. Then the cards are dealt. Instead of considering the
(
52
5

)(
47
5

)
possible hand combinations

that can be dealt in a general poker game, the hands are assumed to be real numbers, drawn

from the interval [0, 1]. Player 1’s hand is the value u of a continuous random variable U and

player 2’s hand is the value v of a continuous random variable V . U and V are independently,

identically distributed on [0, 1] according to the cumulative distribution function F : [0, 1]→ R+.

The function f : [0, 1]→ R++ denotes the probability density function for this distribution and
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is assumed to be positive and continuous on its domain.

After seeing his hand, player 1 can choose between passing and betting. If he passes, a

showdown follows immediately. In the showdown, the players compare their hands and the

player with the highest hand wins the pot. Betting means adding an extra amount b to the

stakes. After a bet by player 1, player 2 can decide to fold or to call. If he folds, then he loses

his ante of a to player 1. To call, player 2 must put an extra amount b in the pot. In that case,

a showdown follows and the player with the better hand takes the pot.

The difference with the case of Von Neumann and Morgenstern (1944) is that they only

consider hands u and v that are drawn independently from uniform distributions on [0, 1].

Furthermore, they use a somewhat different terminology for the strategic options of the players.

Whereas we distinguish the terms betting en passing for player 1 and calling and folding for

player 2, Von Neumann and Morgenstern (1944) speak of bidding high and bidding low for both

players.

Figure 1 displays our poker model in extensive form. Two possible hands, u1 and u2, for

player 1 are shown. To keep the picture clear, player 2 is shown receiving his hand v after player

1 has decided how to bet. Notice that the hand v shown in the picture has a value that satisfies

u1 < v < u2.

Figure 1: The extensive form of two-person minipoker (u1 < v < u2).

3 Optimal strategies

In this section we will search for the Nash equilibria of minipoker. We restrict attention to

behavioural strategies that are measurable functions of the player’s hands. The structure of the
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analysis is similar to the way Binmore (1992, chapter 12) explains a specific variant of this game.

Pure strategies for Von Neumann’s poker model are functions g : [0, 1] → {P, R} and h :

[0, 1] → {F, C}. A mixed strategy is therefore something rather complex. Since the game has

the property of perfect recall, according to Kuhn (1953) we can work with behavioural strategies

as well, without really restricting the players in their possibilities.

A behavioural strategy for player 1 is a function p : [0, 1] → [0, 1], where p(u) is the prob-

ability with which he bets if the value of his hand is u. Similarly, a behavioural strategy for

player 2 is a function q : [0, 1]→ [0, 1], where q(v) is the probability with which he plans to call

if he is dealt a hand with value v.

Suppose that the players use the behavioural strategies p and q. Then, given a deal (u, v),

we can compute the expected gain z(u, v) of player 1. This value depends on who has the better

hand. If u > v,

z(u, v) =

B,F︷ ︸︸ ︷
ap(u)(1− q(v))+

B,C︷ ︸︸ ︷
(a+ b)p(u)q(v)+

P︷ ︸︸ ︷
a(1− p(u))

= a+ bp(u)q(v).

If u < v,

z(u, v) =

B,F︷ ︸︸ ︷
ap(u)(1− q(v))−

B,C︷ ︸︸ ︷
(a+ b)p(u)q(v)−

P︷ ︸︸ ︷
a(1− p(u))

= 2ap(u)− (2a+ b)p(u)q(v)− a.

Even though player 1 does not know what player 2 is holding, he can now compute the expec-

tation with respect to v of his own payoff for a given hand u.

E1(u) =

∫

v<u

z(u, v)f(v)dv +

∫

v>u

z(u, v)f(v)dv

=

∫ u

0
(a+ bp(u)q(v))f(v)dv +

∫ 1

u

(2ap(u)− (2a+ b)p(u)q(v)− a)f(v)dv

We can write

E1(u) = p(u)S1(u) + T1(u),

where

S1(u) = 2a(1− F (u)) + b

∫ u

0
q(v)f(v)dv − (2a+ b)

∫ 1

u

q(v)f(v)dv and

T1(u) = 2aF (u)− a.

Analogously, for player 2, we get

E2(v) = −

∫

u<v

z(u, v)f(u)du−

∫

u>v

z(u, v)f(u)du

= −

∫ v

0
(2ap(u)− (2a+ b)p(u)q(v)− a)f(u)du−

∫ 1

v

(a+ bp(u)q(v))f(u)du.
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Thus we can write

E2(v) = q(v)S2(v) + T2(v),

where

S2(v) = (2a+ b)

∫ v

0
p(u)f(u)du− b

∫ 1

v

p(u)f(u)du and

T2(v) = 2aF (v)− 2a

∫ v

0
p(u)f(u)du.

When we look for a Nash equilibrium (p̃, q̃), all that matters are the signs of the functions S̃1

and S̃2, obtained by writing q(v) = q̃(v) and p(u) = p̃(u). How can we see this? Suppose that

player 2 uses strategy q̃. Then player 1 will get a payoff of p(u)S̃1(u) + T̃1(u) if he raises with

probability p(u) when dealt u. If S̃1(u) > 0, the choice p(u) = 1 is optimal. If S̃1(u) < 0, the

choice p(u) = 0 is optimal. Only if S̃1(u) = 0, other choices of p(u) are optimal too. Applying

similar considerations to player 2, we obtain the following criteria for equilibrium strategies p̃

and q̃:

S̃1(u) > 0 ⇒ p̃(u) = 1;

S̃1(u) < 0 ⇒ p̃(u) = 0;

0 < p̃(u) < 1 ⇒ S̃1(u) = 0;

S̃2(v) > 0 ⇒ q̃(v) = 1;

S̃2(v) < 0 ⇒ q̃(v) = 0;

0 < q̃(v) < 1 ⇒ S̃2(v) = 0.

Figure 2(a) shows what the graph of S̃2(v) looks like. Here and in other figures, for F we have

chosen the uniform distribution on the interval [0, 1], while the ratio b
a
of the bet size and the

ante is equal to 1. To check this, take a look at the expression for S̃2(v). Since both a and b

are positive numbers, f(u) is assumed to be positive for all u ∈ [0, 1] and p(u) can only take

nonnegative values, it follows that the function S̃2 is weakly increasing in v. Substituting v = 0

in the formula for S̃2(v) yields S̃2(0) ≤ 0, while substitution of v = 1 tells us S̃2(1) ≥ 0. Since S̃2

is necessarily continuous, there exist numbers x and y such that x is the smallest number in [0, 1]

for which S̃2(x) = 0 and y is the largest number in [0, 1] for which S̃2(y) = 0. Note that, unless

x = y, the function S̃2 cannot be strictly increasing. The information about S̃2, summarized

in figure 2(a), tells us much about the function q̃. What we know about q̃ is summarized in

figure 2(c).

The expression for S̃2(v) is informative about the function p̃ too. Since S̃2(v) is constant for

v on the interval [x, y], we must have p̃(v) = 0 on the interval (x, y). However, p̃(v) cannot be

zero on a larger open interval I, because this would imply that S̃2(v) would then be constant

on I. This constant would need to be zero, because S̃2(v) = 0 on the interval [x, y]. However,

this contradicts the fact that [x, y] is the largest interval on which S̃2(v) = 0.
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Figure 2: Finding the equilibrium strategies p̃ and q̃.

What we have learned about p̃ tells us something about S̃1. It cannot be that S̃1(u) < 0

immediately to the left of x, because then p̃(u) = 0 immediately to the left of x. Because S̃1 is

continuous, it follows that S̃1(x) ≥ 0. For similar reasons S̃1(y) ≥ 0. Figure 2(c) tells us that

q̃(u) = 0 for every u on the interval (0, x) and that q̃(u) = 1 on the interval (y, 1). Within these

intervals, we can differentiate S̃1(u) with respect to u, to obtain that

d

du
S̃1(u) = −2af(u) + 2(a+ b)q̃(u)f(u) for all u ∈ (0, x) ∪ (y, 1).

Thus d
du

S̃1(u) < 0 for u ∈ (0, x) and d
du

S̃1(u) > 0 for u ∈ (y, 1). Consequently, S̃1 decreases on

[0, x] and increases on [y, 1], as indicated in figure 2(b).

Figure 2(b) enables us to tie down p̃ completely. We already know that p̃(u) = 0 for

u ∈ (x, y). But now we know that S̃1(u) > 0 on [0, x) and (y, 1]. Thus, p̃(u) = 1 on these

intervals, as figure 2(d) shows.
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Next, use the information about p̃ and q̃, together with the fact that S̃1(x) = S̃1(y) =

S̃2(x) = S̃2(y) = 0 to see that x and y are determined by the equations

F (y) = 1−
2a+ b

b
F (x) and F (y) =

a+ b

2a+ b
+

a

2a+ b
F (x)

Since F is assumed to have a smooth structure, we can solve these equations to find

x = F−1

(
ab

(a+ b)(4a+ b)

)
and y = F−1

(
(2a+ b)2 − 2a2

(a+ b)(4a+ b)

)
. (1)

So p̃ is determined uniquely. However, q̃ is not. For x ≤ v < y, q̃(v) can be chosen freely, subject

to the constraints

1− F (y) =

∫ y

x

q(v)f(v)dv and S̃1(u) ≤ 0 for x < u < y.

These constraints boil down to

1

F (y)− F (x)

∫ y

x

q(v)f(v)dv =
a

a+ b
,

1

F (y)− F (u)

∫ y

u

q(v)f(v)dv ≥
a

a+ b
for x < u < y.

Verbally, q̃ is constrained such that between x and y the average of q̃(v) is a
a+b
, and on any right

end of this interval the average of q̃(v) is at least a
a+b
. Although there are many choices for q̃

that satisfy these constraints, there is a unique admissible Nash equilibrium strategy that does

this. A strategy is said to be admissible for a player if no other strategy for that player does

better against one strategy of the opponent without doing worse against some other strategy of

the opponent. This is the strategy with which player 2 folds when his hand is under a certain

threshold value z and calls when his hand is above it, such that

∫ y

z

f(v)dv =

∫ 1

y

f(v)dv.

It follows that this unique value of z is given by

z = F−1

(
b(3a+ b)

(a+ b)(4a+ b)

)
. (2)

This admissible strategy is already indicated in Figure 2(c). Using the strategies p̃ and q̃ we

computed, we can derive the value of the minipoker game. In Figure 3 all possible hands for

player 1 are set out horizontally, together with the action chosen for each hand u. For player 2,

the hands v and corresponding actions are set out vertically. In each of the ten areas that

appear, we know the combination of actions chosen by both players and thus we can give the

payoff for each possible combination of hands. By multiplying the area size with this payoff,
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Figure 3: Expected payoff for all (u, v) to player 1 in the Nash equilibrium (p̃, q̃).

and consequently summing over all ten areas, we can compute the value of the game.

va,b = a

(∫ y

0

∫ u

0
f(v)dvf(u)du+

∫ 1

y

∫ z

0
f(v)dvf(u)du+

∫ x

0

∫ z

u

f(v)dvf(u)du

)

−a

∫ y

x

∫ 1

u

f(v)dvf(u)du+ (a+ b)

∫ 1

y

∫ u

z

f(v)dvf(u)du

−(a+ b)

(∫ x

0

∫ 1

z

f(v)dvf(u)du+

∫ 1

y

∫ 1

u

f(v)dvf(u)du

)

= 2a

∫ 1

x

F (u)f(u)du+ 2b

∫ 1

y

F (u)f(u)du−
a(4a+ 3b)

4a+ b
, (3)

where x and y are as defined in equation (1). The results of the analysis above are summarized

in Theorem 3.1.

Theorem 3.1 If minipoker is played with ante a and bet size b and the hands u and v of the

players both have cumulative distribution F and density f on [0, 1], then the value of the game

is given by

va,b = 2a

∫ 1

x

F (u)f(u)du+ 2b

∫ 1

y

F (u)f(u)du−
a(4a+ 3b)

4a+ b
,

with x = F−1
(

ab
(a+b)(4a+b)

)
and y = F−1

(
(2a+b)2−2a2

(a+b)(4a+b)

)
. In this case, optimal strategies are

Pr{bet with hand u} = p̃(u) =

{
1 if Pr{V ≤ u} ≤ ab

(a+b)(4a+b) or Pr{V ≤ u} >
(2a+b)2−2a2

(a+b)(4a+b) ,

0 otherwise,

for player 1 and

Pr{call with hand v} = q̃(v) =

{
0 if Pr{U ≤ v} ≤ b(3a+b)

(a+b)(4a+b) ,

1 otherwise,

for player 2.
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The results for the case of Von Neumann and Morgenstern (1944) where F is the uniform

distribution on [0, 1], follow directly from Theorem 3.1.

Corollary 3.2 The minipoker game of Von Neumann and Morgenstern (1944), in which F was

the uniform distribution, has value

va,b =
a2b

(a+ b)(4a+ b)
= ax.

Optimal strategies are given by

Pr{bet with hand u} = p̃(u)

{
1 if u ≤ ab

(a+b)(4a+b) or u >
(2a+b)2−2a2

(a+b)(4a+b) ,

0 otherwise,

for player 1 and

Pr{call with hand v} = q̃(v) =

{
0 if v ≤ b(3a+b)

(a+b)(4a+b) ,

1 otherwise.

for player 2.

So, in this simple case, the value of the game is equal to the product of the ante and the value of

the hand that indicates player 1’s strategic boundary between bluffing and passing. Interesting

is the fact that the value is positive in this case. The game is favourable for player 1. To see for

what combination of values of the ante and the bet size the game is most favourable for player 1,

we fix the ante a and compute the derivative of va,b with respect to b.

d

db
va,b =

a2(2a− b)(2a+ b)

(a+ b)2(4a+ b)2
.

This derivative is zero at b = 2a. This is the only solution, since both a and b are positive. Since
d2

db2
va,b = −

1
81a

< 0 for these relative values of the bet size and the ante, we know that the ratio
b
a
= 2 is optimal for player 1. This special case is called pot-limit minipoker, since the maximal

bet size (in this case the only possible bet size) equals the total size of the pot. Now we can

formulate Proposition 3.3.

Proposition 3.3 The pot-limit variant of minipoker with uniform hand distributions is the

unfairest variant possible.

Another thing that is intuitively clear, is easy to recognize now too: for minipoker with uniform

distributions the strategies of the players depend only on the ratio b
a
of the bet size and the ante

and not on the absolute values of b and a. If we define the ratio r as r = b
a
and substitute this

information in the expressions for the boundary values x, y and z given in equations (1) and

(2), we find that

x =
r

(r + 4)(r + 1)
, y =

r2 + 4r + 2

(r + 4)(r + 1)
and z =

r2 + 3r

(r + 4)(r + 1)
.
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This fact is displayed in Figure 4, in which we can also see the limits

lim
r→∞

x = 0, lim
r→∞

y = lim
r→∞

z = 1, lim
r↓0

x = lim
r↓0

z = 0 and lim
r↓0

y =
1

2
.

The shapes of these curves for larger values of r is intuitively clear: when betting and calling
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Figure 4: Boundary values for the optimal strategies as a function of the ratio b
a
of the bet size

and the ante.

becomes relatively expensive, it is wise to do it not too often. As the ratio goes to zero, the

number of hands with which player 2 calls increases quickly. Giving up the ante by folding

becomes relatively expensive. As a consequence, player 1 only folds with the higher half of the

hands, for which the probability that he has the highest hand is larger than 1
2 . Finally, at r = 2,

the case of pot-limit poker, we see that player 1 has the largest bluffing area.

4 A regular deck of cards

In the previous section we derived optimal strategies in the two-person poker game for both

players in a general form. These strategies were given in terms of quantiles of the continuous

distribution function F , the distribution function from which the hands of the players were

drawn. In this section we will see what these results imply when the game is played with a

regular deck of cards, from which the players draw real poker hands.
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4.1 Classification of poker hands

Before we start translating strategies, let us first give an overview of the poker hands that can

occur. A poker hand is a combination of five cards, drawn from a deck of 52 cards. The deck

consists of four suits: hearts (♥), clubs (♣), diamonds (♦) and spades (♠). All suits are equally

valuable, while the 13 cards of each suit have, ranked in decreasing order, the values A(ce),

K(ing), Q(ueen), J(ack), 10, 9, . . . , 2. All hands belong to one of the ten classes that are

defined in decreasing order of value in Table 1. The order of hands within a class is determined

Class Description Example

RF Royal Flush five consecutive cards of one suit, starting
with an ace

(♣A,♣K,♣Q,♣J,♣10)

SF Straight Flush five consecutive cards of the same suit (an
ace can have the value 1)

(♠5,♠4,♠3,♠2,♠A)

4K Four of a Kind four cards with equal values (♦4,♣4,♥4,♠4,♦Q)

FH Full House a triplet of cards with the same values,
together with a pair with equal values

(♠5,♣5,♦5,♦10,♥10)

F Flush five cards of the same suit (♣K,♣J,♣9,♣3,♣2)

S Straight five consecutive cards (♥K,♠Q,♥J,♣10,♦9)

3K Three of a Kind three cards with the same value (♣Q,♥Q,♠Q,♦J,♥6)

2P Two pair two pairs with the same values within each
pair

(♠A,♥A,♦8,♠8,♣3)

1P One pair one pair of cards with equal values (♥9,♦9,♣K,♦10,♦4)

HC High Card any combination of cards that does not fit
in any of the classes above

(♥K,♦J,♦9,♣4,♠2)

Table 1: Classification of poker hands

by comparing the cards of the hands separately, starting with the most important card of a hand.

The importance of the card within a hand depends on the class to which the hand belongs. In

Table 1 the card order in the example hands is such that the most important cards are put in

front.

The total number of different hands of five cards that can be drawn from a single deck of 52

cards is
(
52
5

)
= 2, 598, 960. The number of hands in each class and the probability of receiving

a hand from this class is given in Table 2 for all ten classes. The decreasing probabilities are

the reason that the order of the classes is as it is. If we pay attention to the order of the hands

within the ten classes, then we obtain 7, 462 ordered subclasses. Within each subclass, all hands

really are equal. In Figure 5 we give the frequencies with which hands of a certain subclass

appear. The small bar with high frequencies around subclass number 7, 200 corresponds to the

Straights, while the somewhat wider block with frequencies of 24 corresponds to Full House.

Figure 6 gives the continuous approximation of the cumulative distribution of the poker hands,
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Class Number Prob.(%)

RF 4 0.000
SF 36 0.001
4K 624 0.024
FH 3,744 0.144
F 5,108 0.197
S 10,200 0.392

3K 54,912 2.113
2P 123,552 4.754
1P 1,098,240 42.257
HC 1,302,540 50.118

Total 2,598,960 100.000

Table 2: Numbers and probabilities for all classes of poker hands
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Figure 5: Frequencies of appearance of subclasses of poker hands in a single deck of 52 cards.

where both hand numbers and frequencies are normalized.

4.2 From a continuous to a discrete distribution

All results we presented so far were derived using continuous hand distributions. Now we want to

take these results from the continuous situation into the discrete real world, where the hands are

drawn from a deck of 52 cards, with or without replacement. An intuitive way to approximate

optimal strategies in the discrete game is the following. If the 5-card hand of a player ranks

n (from the bottom) out of 2,598,960, we treat his hand as if he were dealt n
2,598,960 in the
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Figure 6: Continuous approximation of the cumulative distribution of the 7, 462 subclasses of
poker hands in a single deck of 52 cards.

continuous game.

As Cutler (1975) suggests, there are at least three objections to this approximation. First

of all, the optimal strategies for the discrete case may differ considerably from the ones derived

for the continuous case. However, according to Von Neumann and Morgenstern (1944, p. 209),

the maximal loss that can be incurred by playing the “continuous” strategy is not large. More

precisely, the difference is only of the order 1
2,598,960 . Second, some different hands have an equal

value, as the ordering (partly) disregards suits. This fact is taken care of by using the general

distribution F in our derivation. Even if certain hands occur with higher probability than others,

our results still apply. Finally, the hands are dealt from one deck without replacement. That

is, the hand one player holds affects what the other may hold. As a result, increasing the rank

of a hand does not necessarily increase its value. Consider the following example. If you hold a

straight flush to the five, your opponent may hold 31 higher straight flushes or three equal ones.

However, if you hold four aces and a six, your opponent may only beat you with 27 different

straight flushes. We will not take into account this last remark and focus on the case where

minipoker is played with a separate deck of cards for each player. Or equivalently, it could be

interpreted as the game in which the players’ hands are drawn from a regular deck of 52 cards

with replacement. We will give an approximation for optimal play for this game in section 4.3.
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4.3 Optimal play

In this section we will tell what the optimal minipoker strategies for both players mean in terms

of real poker hands. We consider the case where hands are drawn from a regular deck of cards

with replacement. Unless stated otherwise explicitly, the results in this section apply to the case

where the ante and the bet size are equal, i.e. r = b
a
= 1. Recall from Theorem 3.1 that if

the players are dealt the hands u and v, the optimal strategy for player 1, stated in terms of

probabilities, for this ratio is

Pr{bet with hand u} = p̃(u) =

{
1 if Pr{V ≤ u} ≤ 1

10 or Pr{V ≤ u} > 7
10 ,

0 otherwise,

and that it is optimal for player 2 to play

Pr{call with hand v} = q̃(v) =

{
0 if Pr{U ≤ v} ≤ 2

5 ,

1 otherwise.

Using the information that is displayed in Figure 6, we can translate these probabilities to the

probabilities of poker hands. We find that the nearly optimal strategy for player 1 is

Pr{bet with hand u} =





1 if u ≤ (Q, 7, 5, 4, 3),

0 if (Q, 7, 6, 3, 2) ≤ u ≤ (8, 8, 9, 5, 4),

1 if u ≥ (8, 8, 9, 6, 2),

and that it is approximately optimal for player 2 to play

Pr{call with hand v} =

{
0 if v ≤ (A, Q, 8, 6, 2),

1 if v ≥ (A, Q, 8, 6, 3).

To be precise, for player 1 the hands are selected such that (Q, 7, 5, 4, 3) is the highest hand for

which Pr{V ≤ u} ≤ 1
10 and (Q, 7, 6, 3, 2) is the lowest hand for which Pr{V ≤ u} > 1

10 . To

indicate the dependency of the strategies on the ratio of bet size and ante, that was shown for

the uniform case in Figure 4, Table 3 gives the boundary hands for some other relative values of

a and b. In this table, x− is the highest hand below the boundary x. The definitions for y− and

z− are analogous. The case r = 1 is included to compare with the results above. In Table 3 we

can clearly see that, with a relatively high cost of betting and calling, optimal play prescribes

betting and calling only for a small number of hands.

5 Relative skill

In this section we will study the game in which the hands u and v for player 1 and 2 are drawn

independently from a uniform distribution on [0, 1]. We focus on the case with equal ante and

bet size again and normalize to a = b = 1. We will follow the analysis of skill analysis that

was proposed by Borm and Van der Genugten (2001). We will give a short description of this

relative skill measure for two-player games in the next section.

14



x− y− z−

r = b
a

(player 1’s upper (player 1’s lower (player 2’s lower
bound for bluffing) bound for betting) bound for calling)

1 (Q, 7, 5, 4, 3) (8, 8, 9, 5, 4) (A, Q, 8, 6, 2)

2 (Q, 9, 5, 4, 2) (10, 10, Q, J, 2) (3, 3, K, J, 2)

3 (Q, 8, 7, 4, 3) (J, J, A, 9, 3) (6, 6, J, 10, 3)

5 (J, 10, 9, 6, 5) (K, K, 10, 9, 3) (9, 9, J, 10, 6)

10 (J, 9, 6, 5, 4) (A, A, K, J, 10) (Q, Q, K, 4, 2)

100 (9, 7, 5, 3, 2) (K, K, K, Q, 2) (7, 7, 7, K, 4)

Table 3: Boundary values of the optimal strategies for both players for various ratios r = b
a
.

5.1 The relative skill measure

For any game we distinguish three types of players: beginners, optimal players and fictive

players. Beginners have just learned the rules of the game and play a naive strategy, while

the optimal players play a minimax strategy against their opponent. The fictive players play

optimal too, but they have more information; they know the complete outcome of the external

chance moves before they have to decide what action to take. In minipoker this means that

a player knows what hand the opponent holds. In a two-person game these three types can

participate in the game in both player roles. Skill is defined as the relative influence of the

players on the outcome of the game. To measure this, one computes two effects in the game, the

learning effect (LE) and the random effect (RE). The learning effect is defined as the difference

in expected payoff between an optimal player and a beginner, while the random effect is the

difference between the expected payoff of a fictive player and the expected payoff of an optimal

player. To compute expected payoffs in the strategic environment of the poker game, we also

need to know the strategy of the opponent. All three player types are evaluated against the same

type of opponent, namely one that plays the minimax strategy. To find the expected payoffs

of a specific player type in a two-person game, we take the average over the two player roles.

When we refer to strategies we will use the subscript 0 to indicate that it is a strategy that is

used by a beginner, while a strategy with the subscript f corresponds to a fictive player. If we

introduce the notation Ui(s1, s2) for the expected payoff to player i when player 1 plays strategy

s1 and player 2 uses strategy s2, then we can write down the expressions for the learning effect,

the random effect and the relative skill measure RS.

LE =
1

2
(U1(p̃, q̃) + U2(p̃, q̃)− U1(p0, q̃)− U2(p̃, q0)) (4)

RE =
1

2
(U1(pf , q̃) + U2(p̃, qf )− U1(p̃, q̃)− U2(p̃, q̃)) (5)

RS =
LE

LE +RE
=

−U1(p0, q̃)− U2(p̃, q0)

U1(pf , q̃) + U2(p̃, qf )− U1(p0, q̃)− U2(p̃, q0)
(6)
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In this expression, p’s correspond to strategies of player 1 and q’s denote strategies of player 2.

It is easy to see from equations (4)-(6) that 0 ≤ RS ≤ 1. The limit cases RS = 0 and RS = 1

correspond to pure games of chance and pure games of skill respectively.

In section 5.2 we will present our assumptions on the behaviour of beginners in minipoker

as well as the resulting payoffs for these players, while section 5.3 contains the derivation of the

strategies that fictive players use and the computation of their corresponding payoffs.

5.2 Beginners

What will be the strategies of players who play this game for the first time, just after the rules

are explained to them? Perhaps they heard about the famous video poker variant “Jacks or

Better”. In this game, as the name suggests, only hands with a pair of Jacks, Queens, Kings

or Aces (and all hands from higher classes) have value for the player. As a result naive players

may be betting or calling with exactly these hands. Even if they do not know this game, this

border seems to be a reasonable one. After all, poker players tend to like hands that look fancy;

any hand with at least a pair of images surely satisfies this condition of prettiness.

What does this reasoning mean for the strategies of the beginners? Player 1 bets only if his

hand is at least (J, J, 4, 3, 2). For each player the total probability of receiving a hand up to

(J, J, 4, 3, 2) is 1189
1498 ≈ 0.7937. So we can formulate the strategy for player 1 as a beginner as

p0(u) =

{
0 if 0 ≤ u ≤ 0.7937

1 if 0.7937 ≤ u ≤ 1,

while the beginner’s strategy for player 2 can be formulated as

q0(v) =

{
0 if 0 ≤ v ≤ 0.7937

1 if 0.7937 ≤ v ≤ 1.

Both strategies are displayed graphically in Figure 7. In Figure 8 the expected payoff to player 1

Figure 7: The strategies p0 and q0 for beginning player 1 and player 2 respectively.

is given for all hand distributions (u, v), assuming that player 1 uses strategy p0 and player two
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Figure 8: Expected payoff for all (u, v) to player 1 if he plays as a beginner against the equilibrium
strategy q̃ of player 2.

plays the strategy q̃, that is given in Corollary 3.2. Using this figure, one can sum over a number

of simple integrals to find that the expected payoff to player 1 as a beginner is

U1(p0, q̃) =
310

3817
≈ 0.0812.

We do the same computation for player 2, using Figure 9 in which the expected payoffs to

player 1 for the strategy combination (p̃, q0) are shown and find that

U2(p̃, q0) = −
265

2254
≈ 0.1176.

Figure 9: Expected payoff for all (u, v) to player 1 if player 2 plays as a beginner against
equilibrium strategy p̃ of player 1 that was given in Corollary 3.2.
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5.3 Fictive players

In the current section we will compute the expected payoffs of fictive players in minipoker.

Fictive players have more information than normal players. They know the outcome of the

chance move in the game and they can use this information in their strategies. For minipoker,

this means that the fictive player can base his actions on his own hand, but also on the hand of

his opponent. Given the fact that he plays against a player who uses the minimax strategy, he

can decide what will be his best action for any hand combination (u, v).

Figure 10 shows the payoff to player 1 for each hand combination if player 1 plays as a fictive

player against player 2’s equilibrium strategy q̃. The payoffs in the figure are such that player

1 takes the optimal action for each pair of hands (u, v). For example, in the area above the line

v = 2
5 and above the line u = v, player 1 knows that player 2 will always call. Since player

1 has the lower card, he had better pass. This leads to the expected payoff of −1 that the

figure displays for this area. The expected gains of player 1 can now be computed with help of

Figure 10 and are equal to

U1(pf , q̃) =
17

50
.

Figure 11 shows the payoff to player 1 for each card combination if player 2 plays as a fictive

Figure 10: Expected payoff for all (u, v) to fictive player 1 if player 2 uses the equilibrium
strategy q̃.

player against player 1’s equilibrium strategy p̃. The expected gains for player 2 as a fictive

player can now be computed with help of this figure and are equal to

U2(p̃, qf ) =
7

50
.
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Figure 11: Expected payoff for all (u, v) to player 1, using his equilibrium strategy p̃, if he faces
a fictive player 2.

Player 1 Player 2 Game

Beginner 0.0812 -0.1176 -0.0182
Optimal 0.1000 -0.1000 0.0000
Fictive 0.3400 0.1400 0.2400

LE 0.0188 0.0176 0.0182
RE 0.2400 0.2400 0.2400
RS 0.0726 0.0682 0.0704

Table 4: Results of the skill analysis.

5.4 Results of the skill analysis

In the previous two sections we computed the expected payoffs of the beginners and the fictive

players. For our two-person game we have enough information to compute the learning effect,

the random effect and the skill level according the formulas (4)-(6). The resulting numbers

are given in Table 4. In this table we also give the results of the skill analysis for each player

separately. The table illustrates that the game does not contain many skill elements for either of

the players. The relatively large random effects given in Table 4 tell us that the dealing has an

influence on the possibilities of both players that certainly is not negligible. This is an intuitive

result for this poker game with a very small range of strategic options for the players. Most

poker games have a more complex decision tree, which can for example include a number of

raises, multiple bet sizes and a draw. We expect that such an increase in the complexity of the

decision tree will also heighten the skill level of the game.

Although this skill level 0.0704 is close to zero, it is still relatively large, if compared to

the skill levels that Van der Genugten, Das and Borm (2001) found for games that intuitively

classify as games of chance, such as Golden Ten (0.012) and Roulette (0.0004). There is some

skill involved in poker, even in this simple variant, as our intuition already suggested.
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